Performance of the Shallow Water Equations on
the CM-200 and CM-5 Parallel Supercomputers

Oliver A. McBryan
CU-CS-634-92 December 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1992 2. REPORT TYPE 00-00-1992 to 00-00-1992
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Performance of the Shallow Water Equations on the CM-200 and CM-5
Parallel Supercomputers

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Computer Science,University of REPORT NUMBER
Colorado,Boulder,C0O,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 28
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



PERFORMANCE OF THE SHALLOW WATER EQUATIONS
ON THE CM-200 and CM-5 PARALLEL SUPERCOMPUTERS*

Oliver A. McBryan'

Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract;

We describe the implementation of a fluid dynamical benchmark on two Thinking
Machines Corporation parallel computers - the 65,536 processor CM-200 computer and
the 1024-node CM-5 computer. The benchmark, the Shallow Water Equations, is
frequently used as a model for both oceanographic and atmospheric circulation. We
describe the steps involved in implementing the algorithm on the computers and we
provide details of resulting performance.

We have measured 5.2 Gflops (64-bit arithmetic) and 8.1 Gflops (32-bit) on the
CM-200 while the CM-5 delivers 22.1 Gflops (64-bit) and 24 Gflops (32-bit). For
comparison, performance of 1.53 Gflops was measured for the same algorithm on the
CRAY Y-MP/8, 1.28 Gflops on the 256-node SUPRENUM-1 and 0.54 Gflops was
measured on the 128-node Intel iPSC/860.

* To appear in Proceedings of the Fifth Workshop of the European Centre for Medium-Range Weather
Forecasts on "Uses of Parallel Processors in Meteorology", Nov. 23-27, 1992.

T Research supported by the Air Force Office of Scientific Research, under grant AFOSR-89-0422 and by
NSF Grand Challenge Applications Group grant ASC-9217394.






L1 D I

The Shallow Water Equations are a standard model for atmospheric and
oceanographic processes. Implementations of the algorithm have been used as
benchmarks for vector and parallel supercomputer performance for many years [1-5,8].

The Shallow Water code is very memory intensive, involving 14 variables per
grid point, and accesses these using nine-point stencils, non-linear expressions and
essential divisions. The combined effect provides a decidedly non-trivial test of any
computer system. We have recently implemented the benchmark on the CM-200 and
CM-5 supercomputers and report on the results in this paper.

The tests were run on a CM-200 at Thinking Machines Corporation and on the
CM-5 at Los Alamos National Laboratory. Measured CM-200 performance was 5.25
Gflops (64-bit) and 8.09 Gflops (32-bit). Measured CM-5 performance was 22.1 Gflops
for 64-bit and 24 Gflops for 32-bit computations. Numerical results agreed to high
precision with those from other machines. We expect that even higher per-node CM-5
performance could be achieved by utilizing explicit optimizations. In fact the current
TMC compiler, CMF 2.0, does a poor job of optimizing certain types of memory access.
The worst case is the cshift operator which makes a complete copy of its array argument
even if only local memory accesses are used. A new compiler release, CMF 2.1, will
apparently overcome these inefficiencies.

We compare the performance announced here with the CRAY X-MP/4 which
solves the equations at a rate of 560 Mflops on 4 processors, and with the CRAY Y-MP/8
where 1530 Mflops is attained, as well as with the performance on several of the other
leading parallel systems.

2. THE CM-200 and CM- MPUTER

The CM-200 SIMD computer is a scaled up version of the original CM-2
computer. As with the CM-2, the CM-200 features 64K bit-serial processors, and 2K
floating point Weitek vector processors, interconnected to form a hypercube. There are
16 bit-serial processors on a chip, and pairs of chips share a vector processor. In typical
use, 32 processors sharing a Weitek each send one or more floating point numbers to the
Weitek, which returns a result operand to each processor. Because operands are supplied
in bit-serial fashion by the processors but are expected in standard floating point format
by the Weitek, a transpose of the incoming 32-bit wide bit-stream is required before data
is provided to the Weitek. This is accomplished by a special chip (Sprint chip), without
user intervention, although it does significantly slow performance. As shown here the
key to good CM-200 (or CM-2) performance is to leave transposed vectors in the vector
register block of the Weitek for as long as possible.

The CM-5 computer is a MIMD parallel computer featuring up to 1024 nodes and
a fat-tree interconnection network. Each node consists of a Sparc scalar processor, 4
DASH vector units (each with a peak rate of 32 Mflops) and 32 MBytes of shared
memory.

The CM-200 software used here consists primarily of the CMF Fortran compiler,
which supports the array extensions of Fortran 90, plus several compiler directives that
control CM-200 and CM-5 specific actions such as data placement and layout. In the
case of the CM-200 there are two alternate modes of programming known as the Paris
and Slicewise models respectively. The Paris model, supported by the compiler, focuses






-3-

on the 64K bit-serial processors (or their representation as an even larger number of
virtual processors). All data is stored on these processors and is sent to the vector nodes
for immediate return of operands as needed. In the Slicewise model the system is
regarded as an assembly of 2048 vector nodes, each of which has a set of vector registers,
and a large more expensive main memory storage (the memory associated with the bit-
serial processors). The compiler recognizes the Slicewise model by generating code that
attempts to maximize use of the vector registers, returning results to main memory only
when absolutely essential. The distinction between the Paris and Slicewise models is
effected by use of a compiler switch.

The CM-5 environment used here is also based on the use of the CMF compiler.
Thus the CM-5 is regarded as a SIMD architecture and in that case any valid CM-200
program will run unchanged on the CM-5. There is no concept of Paris model for the
CM-35 - the standard model corresponds to the Slicewise model for the CM-200.

We have also implemented the Shallow Water Equations using the MIMD
CMMD message passing environment. Unfortunately it is not yet possible to use the
vector nodes when using CMMD because node vector compilers for Fortran (F77 or F90)
have not yet been released. Therefore CMMD programs can currently use only the scalar
Sparc processors located at each node. Resulting performance is not reported on here
since it is not a realistic estimate of CM-3 capabilities.

E SHALLOW WATER ATI BENCHMARK

As an example of the current capabilities of the CM systems, we describe the
implementation of a standard two-dimensional atmospheric model - the Shallow Water
Equations - on the machines. These equations provide a primitive but useful model of the
dynamics of the atmosphere. Because the model is simple, yet captures features typical of
more complex codes, the model is frequently used in the atmospheric sciences
community to benchmark computers [1-2]. Furthermore, the model has been extensively
analyzed mathematically and numerically [6-7].

The Shallow Water Equations, without a Coriolis force term, take the form:

du/ dt—gv+dH | dx =0,
ov/ot—cu+oH/[dy=0,
JP [ dt+ dPu/ dx+JPv/ dy =0,

where # and v are the velocity components in the x and y directions, P is pressure, ¢ is
the vorticity: ¢=0av/dx—du/dy, and H, related to the height field, is given by:
H=P+ @’ +v*)/2. It is required to solve these equations in a rectangle a<x <b.
¢ £y<d. Periodic boundary conditions are imposed on u,v,P, each of which satisfies
fx+by)=fx+ay), f(x,y+d)=f(x,y+o0).

- A scaling of the equations results in a slightly simpler format. Introduce mass

fluxes U =Pu,V =Pv and the potential velocity Z=¢/P, in terms of which the
equations reduce to:






-4-

U OH _

= _zv 0,
ot " ox
v oH
Zizu+ZE =,
ot i dy
9P LU LV _,
ot ox dy

4. DI, 1ZATI

We have discretized the above equations on a rectangular staggered grid with
periodic boundary conditions. The variables P and H have integer subscripts, Z has
half-integer subscripts, U has integer and half-integer subscripts, and V has half-integer
and integer subscripts respectively.

Initial conditions are chosen to satisfy V-v =0 at all times. We time difference
using the Leap-frog method. We then apply a time filter to avoid weak instabilities
inherent in the Leap-frog scheme:

F(ﬂ) — f(ﬂ) + a(f(nH) _ zf(n) +f(n——l)),

where ¢ is a filtering parameter. The filtered values of the variables at the previous
time-step are used in computing new values at the next time-step. For a complete
description of the discretization we refer to [1].

3. SERIAL FORTRAN IMPLEMENTATION

The Fortran code implementing the above algorithm involves a 2D rectangular
grid with variables: u(i,j), v(i,j), p(iJ), z(i,j), psi(i,j), h(i,j). There are three main loops,
two corresponding to the Leap-frog time propagation of various quantities, and one for
the filtering step. Execution of these three loops completes a single time step, which is
then repeated until the desired temporal simulation interval has been achieved. A typical
code sequence, used in the updating of the U, V and P variables, is:

do10 j=1,My
do10i=1,Mx
unew(i+1,j)=uold(i+1,j)+tdts8* (z(i +1,j + 1)+ z(i + 1, j)) *
(ev(@+1,j+D+cv(i,j+ D)+ cev(i, )+ cv(i+1, j)) — tdisdx * (h(i +1, ) — h(i, }))
vrew(i, j+1)=vold (i, j + 1) = tdts8* (z(i + 1, j + )+ z(i, j + 1)) *
(cu@+1, 7+ 1)+ culi, j+ 1)+ culi, j) + cu(i +1, j)) — tdisdy * (h(i, j + 1) — h(i, ))
prew(i, j) = pold(i, j) — tdtsdx* (cu(i+ 1, j) — cu(i, j)) — tdtsdy * (cv(i, j + 1) — cv(i, ))
10 continue

Each such loop is followed by code to implement the periodic boundary
conditions. In the above case, the corresponding boundary code takes the form:






do20 j=1n
unew(l, j) = unew(m+1, j)
vaew(m+1,j+1)=vnew(l,j+1)
prew(m+1,j) = pnew(l,j)

20 continue

Note that there are such loops for both the horizontal and vertical boundaries, and in
addition some corner values are copied as single items.

Excluding the boundary computations, the three major loops in a time step
involve 65 arithmetic operations per grid point. Furthermore 14 physical variables must
be stored per grid point, which significantly limits the largest grid size that can be
accommodated in a single node.

6. CM IMPLEMENTATION

Since the algorithm involves rectangular grid arrays, and a nine-point stencil, the
parallelization of the code is straightforward on the CM-200 or CM-5 under CMF, All
arrays are declared as CMF arrays of the appropriate size without reference to the number
of processors actually in use. The compiler automatically assigns arrays to processors in
an efficient away, preserving locality of rectangular array elements. The primary code
modification required is to rewrite all arithmetic on array elements using F90 array
operations. Most importantly, all indexing offsets are replaced by cshift array

operations. For example we replace u(i,j+1) by cshift(u,2,1).

Normally periodic boundary conditions require copying data between processors
at opposite edges of the processor array - which typically involves long-range
communication In the case that a grid dimension is a power of two, the periodic
boundary condition in the corresponding dimension may be implemented by nearest
neighbor communication due to the fact that the CM systems are logical torii. The
experiments reported here all use this feature.

On the CM-200 we have used three strategies for parallelizing the code, which we
refer to as using Paris, Slice and SerialSlice models. On the CM-5, the Paris model does
not make sense so we used only the Slice and SerialSlice models. We now explain the
ideas behind these approaches. In order to illustrate what the code looks like for these
three approaches we will work with the much simpler example of a relaxation or
averaging process:

.+ U

Vijg T Wjo T Uy YUt U,

i,j i, j+
and for each model we will show the corresponding code that implements the model.
The above operation is to be executed at every point of an Mx x My grid, with periodic

continuation at the boundary.

Paris Model

The Paris model represents the code in the obvious way as a FO0 program which
is then compiled using the -paris compiler option. In this model each arithmetic operand
is fetched from CM memory, and transposed in the Sprint chip before partaking in an
operation. Immediately after the operation the result is re-transposed and transmitted to
CM memory. There is consequently significant internal data traffic and delay between
bit-serial and vector processors. Until the advent of the Slicewise compiler this was the






-6-

only way to program the CM-2 and CM-200 computers. For the grid-average example
the appropriate F90 code would be:

real, array(Mx,My):: u,v
v = cshift(u,1,=1) + cshift(u,1,1) + cshift(u,2,-1) + cshift(u,2,1).

The resulting program would be compiled with the -paris compiler switch.

Slice Model

The Slice model modifies the code slightly to recognize the need for vector
register allocation. Specifically we declare variables to store various communicated
quantities - for example a variable uwest might be used to store the values of u to the
west, as returned by wuwest = cshift(u,1,-1), and similarly for other quantities and
directions. Thus we first prefetch the needed quantities by assignment to these "register
variables". The compiler then (hopefully) assigns the quantities to vector registers
allowing a block of F90 arithmetic-only code to execute unimpeded by the need to get
involved in = data transpositions between vector and bit-serial format (as occurs
automatically for the Paris case). To accomplish this the code must be compiled with the
-slicewise switch. There is a limitation to the effectiveness of the Slice model related to
the number of available vector registers. For our simplified example the resulting code
would be:

real, array(Mx,My) . u,v,unorth,usouth,ueast,uwest
unorth = cshift(u,1,1)

usouth = cshift(u,1,-1)

ueast = cshift(u,2,1)

uwest = cshift(u,2,-1)

V = unorth + usouth + ueast + uwest.

The prefetching aspect is not essential here - in principal the compiler could do this.
However early releases of the slicewise compiler were not so sophisticated and as a result
we hand-code the prefetches as described above. For the example, the explicit
prefetching highlights the slicewise idea - to get as many variables into registers before
beginning numeric computations with them. Ideally we would now perform a series of
arithmetic operations that reuse these variables several times before the next
communication operation. In this respect the grid averaging example is too simple.

SerialSlice Model

The idea behind the SerialSlice model is that the communication inherent in the
Shallow Water Equations should only occur on the boundary of rectangular grids. In
both the Paris and Slice models, all points are treated equally and because the CM-200 is
a SIMD system, communication is actually performed at every grid point. To overcome
this we introduce an explicit decomposition of the grid into rectangular subgrids as one
might do on a MIMD messaging passing system. Specifically, let the global periodic grid
for the Shallow Water Equations be an Mx X My grid, and assume that we subdivide it
into a Px X Py array of subgrids, each of size Nx X N. We can then perform the required
Shallow Water Equation computation by looping over the grid points of each subgrid.
Additionally on the boundary of each subgrid we must execute cshiff communication
operations to obtain data from the neighboring processors.






-7 -

A standard organization is to provide an extra boundary row and column
surrounding each subgrid, into which the neighbor boundary data are copied before each
loop. Parallelism may now be exploited either by parallelizing the loop within each
subgrid or by parallelizing across the subgrids - executing operations at all corresponding
grid-points of subgrids simultaneously. We will choose this latter route, which is
therefore called SerialSlice because it is Serial within subgrids but parallel (and using the
slicewise model) across subgrids. Because the computation is serial within subgrids, the
required communication operations can be executed only on the boundary points.

A convenient way to parallelize across subgrids is to introduce two extra indices
for each array. The first two indices are then used to represent location within a subgrid
while the other two are used to represent the 2D array of subgrids. The intent to process .
the first two dimensions serially may then be signaled to the compiler by a CMF layout
directive: ~

real u(0:Nx +1,0: Ny + 1, Px, Py)
cmf Slayout  u(:serial,:serial,:news,:news),

which specifies that rectangular grid parallelism (:news) be used in the second pair of
dimensions. All loops now remain serial loops in the first two variables, and simply
represent the parallelism in the other two dimensions using the ":" notation of F90:

do20 i=1,Nx
do20 j=1,Ny
unew(i, j,:,:)y =uold(i, j,:,:) + ...
20 continue

Returning to our example, the code would now take the form:

real, array(0: Nx +1,0: Ny + I,Px,Py) LU,y

cmf Slayout  u(:serial,:serial,: news,:news), v(; serial,: serial,: news,: news)

do j=1,Ny
u(0, j,:,2) = cshift(u(Nx, j,:,:),1,1)
u(Nx+1,j,:,:) = cshift(u(l, j,:,:),1,-1)
doi=1,Nx
u(i,0,:,:) = cshift(u(i,Ny,:,:),2,1)
u(@,Ny+1,:,:) = eshift(u(i,1,:,:),2,-1)

doi=1Nx
do j=1,Ny
v(i,j,:,:)=u(i,j—l,:,:)+u(z‘,j+1,:,:)+u(i—1,j,:,:)+u(i+l,j,:,:).

Once again all communication has been completed before we begin the arithmetic
loops (remember that the first two indices do not involve communication). Furthermore






-8-

communication now occurs only on the external boundary of each subgrid, whereas in the
Slice model the shift operations ocurred at all grid points.

7. PERFORMANCE R TS: CM-2

CM-200 performance is presented in Table 1. The measurements were made on
systems of 16,384 processors, but all mflops results in the table have been scaled to a
system of full size (65,536 processors). The algorithm described here should, and does,
scale linearly on the CM-200, as we have checked carefully up to 65,536 processors.
This assumes that the scaling is done in such a way that the number of grid points per
processor is unchanged. Typically we take the grid size to be the largest that will fit in
memory, since this ensures the highest performance. Substantially smaller grid problems
are better solved on systems with fewer processors. These comments apply equally to the
CM-5 computations. The table includes a column called Vpr which is the virtual
processor ratio. This quanity is the number of grid-points per CM-200 bit-serial
processor, or the number of grid-points per CM-5 vector processor respectively.

Table 1: CM-200 Performance

Method Mx My Bits Nodes Vpr Mflops
Serial Slice 4096 8192 32 16384 2048 8086
Slice 4096 4096 32 16384 1024 6001
Paris 4096 4096 32 16384 1024 3598
Serial Slice 4096 4096 64 16384 1024 5249
Slice 2048 4096 64 16384 512 3546
Paris 2048 4096 64 16384 512 1834

The most striking feature of these results is the importance of using the SerialSlice
model. Indeed this method is seen to be about 2.5 times faster than the Paris model for
both 32-bit and 64-bit results, and is 30% to 50% more efficient than using the Slice
strategy. As discussed earlier, the SerialSlice model introduces an additional
parameterization of the computation in terms of the grid size of the serial grid.
Performance depends strongly on the dimensions of that grid. As the serial grid increases
in size, its perimeter becomes smaller in relation to its area, resulting in increased
communication efficiency. On the other hand one does not want the serial grid to
become too large because then the available parallelism across distinct subgrids will be
reduced to the point that the vector nodes can no longer operate at peak performance. We
have studied this effect in order to find the optimal serial grid size and we present the
results for a typical case in the graph below.






Figure 1: Effect of
Serial Dimensions

8000 —+

g- /—’—\
o 6000 -+
= 4000 +
2000 4

0 : : : :

64 32 16 8 4

Serial Grid size Nx

The results for SerialSlice reported in Table 1 are the best results observed for any
subgrid decomposition of the global grid. Thus they correspond to the peak point on the
curve in Figure 1.

PERFORMANCE RES : CM-

CM-5 systems with vector nodes became available only in the last month. We
have made preliminary measurements using both 64 node and 1024 node systems. Table
2 presents the results, from the 1024 node system, including both 32-bit and 64-bit
floating point arithmetic.

Table 2: CM-5 Performance
Mx My Bits Nodes Vpr Mflops
4096 4096 32 1024 4096 17526
16384 16384 32 1024 65536 23971
4096 4096 64 1024 4096 17164
8192 8192 64 1024 16384 22139

As in the CM-200 case, we have performed several hundred measurements using
the SerialSlice strategy. In contrast to the CM-200, we found that in general SerialSlice
is slower than Slice. The explanation for this proves to be related to the CMF 2.0
compiler. The compiler does not realize that the sequential loop within subgrids should
be executed within the processors - instead it actually executes it sequentially on the






-10 -

partition manager (front end system).. This problem will be alleviated in the CMF 2.1
compiler.

The table presents measurements for the largest grid that would fit in the system,
but also a second measurement for a grid 16 times smaller. This indicates that good
performance is still obtained on problems that are more ideally suited to a smaller system,

9. A COMPARISON OF CRAY. CM-200, CM-5, iPSC/860 AND SUPRENUM-1

We have compared the CM-200 and CM-5 performance with that on the CRAY
X-MP and Y-MP computers, on the Intel iPSC/860 hypercube and on the SUPRENUM-1
computer. Results are presented in Table 3. The performance on a single processor of a
CRAY-X-MP was 148 Mflops. The CRAY X-MP4/8 executed the Shallow Water

Equations at 560 Mflops using 4 processors on a 5122 grid, the largest that could be
handled directly (i.e. without SSD coding). The CRAY-Y-MP with § processors runs the

Shallow Water Equations at 1,530 Mflops on a 5122 grid. The iPSC/860 performance
was 543 Mflops on 128 nodes using the largest grid size that would fit in memory.
Finally SUPRENUM-1 performance of 1280 Mflops was measured on a 256-node
machine, again using the largest grid possible. The rationale for using such large grids is
that the benchmark is a guide to behavior of realistic 3D applications where such grid
sizes would be quite realistic. From the performance viewpoint, it is essential to use a
maximal grid size per processor in order to minimize the interprocessor communication
overheads. The CRAY measurements were made by Dr. R. Sato of the National Center
for Atmospheric Research. The iPSC/860 and SUPRENUM results are described in more
detail in [5,10]. .

TABLE 3: COMPARISON OF ARCHITECTURES

Machine Processors | Grid Size Mflops
CM-5 (32-bit) 1024 256M 23971
CM-5 (64-bit) 1024 64M 22139
CM-200 (32-bit) 2048 32M 8086
CM-200 (64-bit) 2048 16M 5249
CRAY Y-MP 8 256K | 1530
CRAY X-MP 4 256K 560
SUPRENUM-1 256 &M 1280
Intel iPSC/860 128 2M 543

ACKNOWLEDGMENTS

We would like to thank Thinking Machines Corporation and Los Alamos National
Laboratory for providing access to the CM-5 systems used here. We would like to thank
the GMD for providing access to the SUPRENUM-1. We would like to thank NASA -
Ames Laboratory for providing access to the Intel iPSC/860. Finally we thank. Dr. R.
Sato of NCAR for providing CRAY X-MP and Y-MP measurements.






S 11 -

REFERE

1. G.-R. Hoffmann, P.N. Swarztrauber, and R.A. Sweet, "Aspects of using
multiprocessors for meteorological modeling," in Multiprocessing in Meteorological
Models, ed. D. Snelling, pp. 126-195, Springer-Verlag, Berlin, 1988.

2. O. McBryan, "New Architectures: Performance Highlights and New Algorithms,"
Parallel Computing, vol. 7, pp. 477-499, North-Holland, 1988.

3.0. McBryan and R. Pozo, "Performance Evaluation of the Myrias SPS-2 Computer,"
CS Dept Technical Report CU-CS-505-90 (to appear in Concurrency: Practice and
Experience), University of Colorado, Boulder, 1990.

4. O. McBryan and R. Pozo, "Performance Evaluation of the Evans and Sutherland ES-1
Computer,” CS Dept Technical Report CU-CS-506-90, University of Colorado, Boulder,
1990.

5. O. McBryan, "A Comparison of the Intel iPSC860 and SUPRENUM-1 Parallel
Computers," University of Colorado Tech. Report CU-CS-499-90 and Supercomputer,
vol. 41, no. 1, pp. 6-17, 1991.

6. R. Sadourny, "The dynamics of finite difference models of the shallow water
equations,” JAS, vol. 32, pp. 680-689, 1975.

7. G.L. Browning and H.-O. Kreiss, "Reduced systems for the shallow water equations,"
JAS, vol. 44, 1987.

8. R. Pozo, "Performance Modeling of Parallel Architectures for Scientific Computing,"
PhD Thesis, Department of Computer Science, University of Colorado at Boulder, 1991.

9. O. McBryan and E. Van de Velde, Hypercube Algorithms and Implementations, SIAM
J. Sci. Stat. Comput., 8, pp. 227-287, 1987.

10. O. McBryan, "Software Issues at the User Interface,”" in Frontiers of Supercomputing
II: A National Reassessment, ed. W.L. Thompson, University of Colorado CS Dept. Tech
Report CU-CS-527-91 and MIT Press, 1992, to appear.












ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.








